月度归档: 2025 年 2 月

  • 【Python】提取视频画面并生成PPT

    比较笨的方法,用来提取PPT课程视频画面,并生成对应的PPT,代码检测黑屏但没有检测白屏,没有检测重复画面(因为有些人讲课会来回翻PPT),因此还有优化空间。内存占用会逐渐增多,不过测试没有出现崩溃的情况。

    PS:做完发现可以直接问讲课人要PPT原件,我,,,

    import cv2
    import os
    import numpy as np
    from pptx import Presentation
    from pptx.util import Inches
    from skimage.metrics import structural_similarity as ssim
    import tkinter as tk
    from tkinter import filedialog, messagebox
    
    # 选择视频和输出目录
    def select_video_and_output():
        video_path = filedialog.askopenfilename(title="选择视频文件", filetypes=[("MP4 files", "*.mp4")])
        if not video_path:
            messagebox.showwarning("选择视频", "未选择视频文件")
            return None, None
        
        output_dir = filedialog.askdirectory(title="选择输出目录")
        if not output_dir:
            messagebox.showwarning("选择输出目录", "未选择输出目录")
            return None, None
    
        pptx_path = os.path.join(output_dir, "output_presentation.pptx")
        return video_path, pptx_path
    
    # 处理视频并生成 PPT
    def process_video_to_ppt(video_path, pptx_path):
        os.makedirs("ppt_images", exist_ok=True)
        
        cap = cv2.VideoCapture(video_path)
        _, prev_frame = cap.read()
        prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
    
        frame_count = 0
        slide_count = 0
        images = []
        similarity_threshold = 0.95  # 提高 SSIM 阈值,减少相似图片
        brightness_threshold = 10  # 黑屏检测(平均亮度 < 10 认为是黑屏)
    
        def process_frame(frame):
            """ 计算 SSIM 相似度,判断是否保存该帧 """
            nonlocal prev_gray, slide_count
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            score = ssim(prev_gray, gray)
    
            # 计算平均亮度,过滤黑屏
            avg_brightness = np.mean(gray)
            if avg_brightness < brightness_threshold:
                return  # 跳过黑屏帧
    
            if score < similarity_threshold:  
                img_path = os.path.join("ppt_images", f"slide_{slide_count}.jpg")
    
                # 确保不同的幻灯片才保存
                if len(images) == 0 or images[-1] != img_path:  
                    cv2.imwrite(img_path, frame)
                    images.append(img_path)
                    slide_count += 1
                    prev_gray = gray  # 只在确认变化时更新参考帧
    
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
    
            # 仅每隔 15 帧处理一次
            if frame_count % 15 == 0:
                process_frame(frame)
    
            frame_count += 1
    
        cap.release()
        # cv2.destroyAllWindows()
    
        # 创建 PPT
        prs = Presentation()
        for img in images:
            slide = prs.slides.add_slide(prs.slide_layouts[5])  # 空白幻灯片
            left, top, width, height = Inches(0), Inches(0), Inches(10), Inches(7.5)
            slide.shapes.add_picture(img, left, top, width, height)
    
        prs.save(pptx_path)
        messagebox.showinfo("完成", f"PPTX 生成完成: {pptx_path}")
    
    # 主函数
    def main():
        root = tk.Tk()
        root.withdraw()  # 隐藏主窗口
        video_path, pptx_path = select_video_and_output()
        if video_path and pptx_path:
            process_video_to_ppt(video_path, pptx_path)
    
    if __name__ == "__main__":
        main()